๐งญ Objectiveยถ
๐ What is Association Rule Mining?ยถ
๐ Use Casesยถ
Back to the top ___
๐ฆ Data Setupยถ
๐งพ Load Datasetยถ
๐งน Preprocessing / Transaction Formattingยถ
๐งฎ Frequency Encoding (Optional)ยถ
Back to the top ___
๐ Exploratory Data Analysisยถ
๐ Item Frequency Plotยถ
๐ Itemset Statisticsยถ
Back to the top ___
๐งฐ Apriori Algorithmยถ
โ๏ธ Setup Parametersยถ
๐ Generate Frequent Itemsetsยถ
๐ Build Association Rulesยถ
Back to the top ___
๐งช Rule Evaluationยถ
๐ Support, Confidence, Liftยถ
๐ Conviction, Leverage (Bonus)ยถ
๐ Top Rules by Metricยถ
Back to the top ___
๐ง Interpretationยถ
๐งญ Business Context for Rulesยถ
๐ Redundant Rules / Filteringยถ
Back to the top ___
๐ Visualizationsยถ
๐งฑ Heatmaps, Matrixยถ
๐ธ Network Graphsยถ
๐ Bar Chart of Top Rulesยถ
Back to the top ___
๐ Final Summaryยถ
โ Key Learningsยถ
๐ผ Implications for Stakeholdersยถ
Back to the top ___
โ FAQ / Notesยถ
๐งฏ Pitfalls in Rule Miningยถ
๐งฌ When to use Apriori vs ECLAT / FP-Growthยถ
Back to the top ___