๐ Objectiveยถ
๐ก Problem Framingยถ
๐ Why Regression?ยถ
Back to the top ___
๐งช Data Setupยถ
๐ฅ Load Datasetยถ
๐ Visual EDAยถ
๐ Feature Engineeringยถ
โ๏ธ Train-Test Splitยถ
Back to the top ___
๐ Preprocessingยถ
โ๏ธ Feature Scalingยถ
๐งน Feature Selection (RFE)ยถ
Back to the top ___
โ Assumption Checksยถ
๐ Linearityยถ
๐ Homoscedasticityยถ
๐ Normality of Residualsยถ
๐ Multicollinearityยถ
๐ Independenceยถ
Back to the top ___
โ๏ธ Base Model: Linear Regressionยถ
๐๏ธ Model Fitยถ
๐ Evaluation Metricsยถ
๐ Residual Analysisยถ
Back to the top ___
๐จ Outlier Detectionยถ
๐ Leverageยถ
๐ฅ Cookโs Distanceยถ
๐ Visual Diagnosticsยถ
Back to the top ___
๐งฐ Regularized Modelsยถ
๐ง Ridge Regressionยถ
๐ฅ Lasso Regressionยถ
๐ง ElasticNetยถ
๐ฏ Hyperparameter Tuningยถ
Back to the top ___
๐ Diagnostic Plotsยถ
๐ Predicted vs Actualยถ
๐ Residual Plotยถ
๐ QQ Plotยถ
Back to the top ___
๐ง Interpretabilityยถ
๐ข Coefficientsยถ
๐งฎ VIFยถ
๐ฌ SHAP / PDPยถ
Back to the top ___
๐งพ Model Comparison Summaryยถ
Back to the top ___
๐ Final Summaryยถ
Back to the top ___
โ FAQ / Notesยถ
๐ When to use regularizationยถ
๐ What impacts Rยฒยถ
๐จ Overfitting indicatorsยถ
Back to the top ___