Python Status: Pending Migration

๐Ÿ“– Deploying Generative AI Modelsยถ

  • ๐Ÿง  Why Deployment is Different for GenAI
    • โš–๏ธ Compute and Latency Tradeoffs
    • ๐Ÿ”„ Stateless vs. Stateful Generations
    • ๐Ÿง  Model Size, Token Limits, and Cost Constraints
  • โš™๏ธ Local Deployment Options
    • ๐Ÿ’ป Run LLMs on Your Machine (GPU/CPU)
    • โš™๏ธ Using Transformers + Text Generation Pipeline
    • ๐Ÿ”ง Quantization + Model Acceleration (e.g. bitsandbytes, GGUF)
  • ๐Ÿณ Dockerizing a GenAI App
    • ๐Ÿงฑ Folder Structure and Dependencies
    • ๐Ÿณ Dockerfile for Hugging Face Model
    • ๐Ÿš€ Run Container Locally with API Endpoint
  • ๐ŸŒ Serving with FastAPI or Flask
    • โš™๏ธ REST API with POST Endpoint
    • ๐Ÿ’ฌ Endpoint for Text Generation
    • ๐Ÿ”’ Basic Auth, Rate Limiting, CORS
  • โ˜๏ธ Cloud Deployment Patterns
    • ๐ŸŒ Hugging Face Inference API
    • ๐Ÿ”ง Hosting via Spaces (Streamlit/Gradio)
    • โ˜๏ธ Deploy on AWS/GCP/Azure
  • โšก Performance + Monitoring
    • ๐Ÿ“Š Token Throughput and Latency
    • ๐Ÿ” Logging Inputs and Outputs
    • ๐Ÿ“ˆ OpenTelemetry / Prometheus (optional)
  • ๐Ÿ›ก๏ธ Production Risks and Mitigation
    • ๐Ÿงจ Prompt Injection Protection
    • ๐Ÿ” Response Filtering / Red-teaming
    • ๐Ÿ”’ Security & Privacy Considerations
  • ๐Ÿ”š Closing Notes
    • ๐Ÿ” Summary and Deployment Recap
    • ๐Ÿง  When to Use Local vs. Cloud
    • ๐Ÿš€ Beyond Notebooks: Launching Real Apps

๐Ÿง  Why Deployment is Different for GenAIยถ

โš–๏ธ Compute and Latency Tradeoffsยถ

๐Ÿ”„ Stateless vs. Stateful Generationsยถ

๐Ÿง  Model Size, Token Limits, and Cost Constraintsยถ

Back to the top


โš™๏ธ Local Deployment Optionsยถ

๐Ÿ’ป Run LLMs on Your Machine (GPU/CPU)ยถ

โš™๏ธ Using Transformers + Text Generation Pipelineยถ

๐Ÿ”ง Quantization + Model Acceleration (e.g. bitsandbytes, GGUF)ยถ

Back to the top


๐Ÿณ Dockerizing a GenAI Appยถ

๐Ÿงฑ Folder Structure and Dependenciesยถ

๐Ÿณ Dockerfile for Hugging Face Modelยถ

๐Ÿš€ Run Container Locally with API Endpointยถ

Back to the top


๐ŸŒ Serving with FastAPI or Flaskยถ

โš™๏ธ REST API with POST Endpointยถ

๐Ÿ’ฌ Endpoint for Text Generationยถ

๐Ÿ”’ Basic Auth, Rate Limiting, CORSยถ

Back to the top


โ˜๏ธ Cloud Deployment Patternsยถ

๐ŸŒ Hugging Face Inference APIยถ

๐Ÿ”ง Hosting via Spaces (Streamlit/Gradio)ยถ

โ˜๏ธ Deploy on AWS/GCP/Azureยถ

Back to the top


โšก Performance + Monitoringยถ

๐Ÿ“Š Token Throughput and Latencyยถ

๐Ÿ” Logging Inputs and Outputsยถ

๐Ÿ“ˆ OpenTelemetry / Prometheus (optional)ยถ

Back to the top


๐Ÿ›ก๏ธ Production Risks and Mitigationยถ

๐Ÿงจ Prompt Injection Protectionยถ

๐Ÿ” Response Filtering / Red-teamingยถ

๐Ÿ”’ Security & Privacy Considerationsยถ

Back to the top


๐Ÿ”š Closing Notesยถ

๐Ÿ” Summary and Deployment Recapยถ

๐Ÿง  When to Use Local vs. Cloudยถ

๐Ÿš€ Beyond Notebooks: Launching Real Appsยถ

Back to the top