๐ Deploying Generative AI Models
ยถ
๐ง Why Deployment is Different for GenAI
โ๏ธ Compute and Latency Tradeoffs
๐ Stateless vs. Stateful Generations
๐ง Model Size, Token Limits, and Cost Constraints
โ๏ธ Local Deployment Options
๐ป Run LLMs on Your Machine (GPU/CPU)
โ๏ธ Using Transformers + Text Generation Pipeline
๐ง Quantization + Model Acceleration (e.g. bitsandbytes, GGUF)
๐ณ Dockerizing a GenAI App
๐งฑ Folder Structure and Dependencies
๐ณ Dockerfile for Hugging Face Model
๐ Run Container Locally with API Endpoint
๐ Serving with FastAPI or Flask
โ๏ธ REST API with POST Endpoint
๐ฌ Endpoint for Text Generation
๐ Basic Auth, Rate Limiting, CORS
โ๏ธ Cloud Deployment Patterns
๐ Hugging Face Inference API
๐ง Hosting via Spaces (Streamlit/Gradio)
โ๏ธ Deploy on AWS/GCP/Azure
โก Performance + Monitoring
๐ Token Throughput and Latency
๐ Logging Inputs and Outputs
๐ OpenTelemetry / Prometheus (optional)
๐ก๏ธ Production Risks and Mitigation
๐งจ Prompt Injection Protection
๐ Response Filtering / Red-teaming
๐ Security & Privacy Considerations
๐ Closing Notes
๐ Summary and Deployment Recap
๐ง When to Use Local vs. Cloud
๐ Beyond Notebooks: Launching Real Apps
๐ง Why Deployment is Different for GenAI
ยถ
โ๏ธ Compute and Latency Tradeoffs
ยถ
๐ Stateless vs. Stateful Generations
ยถ
๐ง Model Size, Token Limits, and Cost Constraints
ยถ
Back to the top
โ๏ธ Local Deployment Options
ยถ
๐ป Run LLMs on Your Machine (GPU/CPU)
ยถ
โ๏ธ Using Transformers + Text Generation Pipeline
ยถ
๐ง Quantization + Model Acceleration (e.g. bitsandbytes, GGUF)
ยถ
Back to the top
๐ณ Dockerizing a GenAI App
ยถ
๐งฑ Folder Structure and Dependencies
ยถ
๐ณ Dockerfile for Hugging Face Model
ยถ
๐ Run Container Locally with API Endpoint
ยถ
Back to the top
๐ Serving with FastAPI or Flask
ยถ
โ๏ธ REST API with POST Endpoint
ยถ
๐ฌ Endpoint for Text Generation
ยถ
๐ Basic Auth, Rate Limiting, CORS
ยถ
Back to the top
โ๏ธ Cloud Deployment Patterns
ยถ
๐ Hugging Face Inference API
ยถ
๐ง Hosting via Spaces (Streamlit/Gradio)
ยถ
โ๏ธ Deploy on AWS/GCP/Azure
ยถ
Back to the top
โก Performance + Monitoring
ยถ
๐ Token Throughput and Latency
ยถ
๐ Logging Inputs and Outputs
ยถ
๐ OpenTelemetry / Prometheus (optional)
ยถ
Back to the top
๐ก๏ธ Production Risks and Mitigation
ยถ
๐งจ Prompt Injection Protection
ยถ
๐ Response Filtering / Red-teaming
ยถ
๐ Security & Privacy Considerations
ยถ
Back to the top
๐ Closing Notes
ยถ
๐ Summary and Deployment Recap
ยถ
๐ง When to Use Local vs. Cloud
ยถ
๐ Beyond Notebooks: Launching Real Apps
ยถ
Back to the top