Python Status: Pending Migration

๐Ÿ“– Large Language Models (LLMs)ยถ

  • ๐Ÿง  What are LLMs?
    • ๐Ÿ” Definition and Intuition
    • ๐Ÿ—๏ธ LLM vs. Standard Transformer
    • ๐Ÿ“ Typical Sizes (Parameters, Layers, Data)
  • ๐Ÿ‹๏ธ Pretraining LLMs
    • ๐Ÿ“– Causal Language Modeling (CLM)
    • ๐Ÿงฉ Masked Language Modeling (MLM)
    • ๐Ÿ” Next Sentence Prediction and Others
    • ๐Ÿง  Self-supervised Learning Explained
  • ๐Ÿ” Fine-tuning Strategies
    • ๐ŸŽฏ Task-specific Fine-tuning
    • ๐Ÿงช Instruction Tuning
    • ๐Ÿ’ฌ RLHF (Reinforcement Learning with Human Feedback)
    • ๐Ÿงฐ Parameter-Efficient Tuning (LoRA, Adapters)
  • ๐Ÿ“Š Evaluation of LLMs
    • โœ… Standard Benchmarks (GLUE, HELM, MMLU)
    • ๐Ÿง  Measuring Hallucination, Bias, Toxicity
    • โš–๏ธ Tradeoffs: Size vs. Accuracy vs. Inference Cost
  • ๐Ÿงฐ LLM Capabilities and Limitations
    • ๐Ÿง  Emergent Behaviors at Scale
    • ๐Ÿ› ๏ธ In-Context Learning
    • ๐Ÿงจ Hallucinations and Failures
    • ๐Ÿ“‰ Prompt Sensitivity
  • ๐Ÿš€ Use Cases and Applications
    • ๐Ÿ’ฌ Chatbots and Assistants
    • ๐Ÿ“„ Text Summarization
    • ๐Ÿ”Ž Search + RAG (Retrieval-Augmented Generation)
    • ๐Ÿง  Reasoning, Coding, Math, and Beyond
  • ๐Ÿ” Risks and Ethical Concerns
    • ๐Ÿ” Model Misuse and Jailbreaks
    • ๐Ÿ”ฌ Biases and Stereotyping
    • ๐Ÿ”’ Privacy, Copyright, and Data Leakage
    • โš–๏ธ Responsible Deployment
  • ๐Ÿ”ง Building with LLMs Today
    • ๐Ÿค– Open vs. Closed Models
    • ๐Ÿงฐ APIs (OpenAI, Anthropic, Cohere)
    • โš™๏ธ Open-source (LLaMA, Mistral, Falcon)
    • ๐Ÿง  Model Selection Tips
  • ๐Ÿ”š Closing Notes
    • ๐Ÿงญ Summary and Key Takeaways
    • ๐Ÿš€ Next Up: Prompt Engineering (05)
    • ๐Ÿง  What to Practice

๐Ÿง  What are LLMs?ยถ

๐Ÿ” Definition and Intuitionยถ

๐Ÿ—๏ธ LLM vs. Standard Transformerยถ

๐Ÿ“ Typical Sizes (Parameters, Layers, Data)ยถ

Back to the top


๐Ÿ‹๏ธ Pretraining LLMsยถ

๐Ÿ“– Causal Language Modeling (CLM)ยถ

๐Ÿงฉ Masked Language Modeling (MLM)ยถ

๐Ÿ” Next Sentence Prediction and Othersยถ

๐Ÿง  Self-supervised Learning Explainedยถ

Back to the top


๐Ÿ” Fine-tuning Strategiesยถ

๐ŸŽฏ Task-specific Fine-tuningยถ

๐Ÿงช Instruction Tuningยถ

๐Ÿ’ฌ RLHF (Reinforcement Learning with Human Feedback)ยถ

๐Ÿงฐ Parameter-Efficient Tuning (LoRA, Adapters)ยถ

Back to the top


๐Ÿ“Š Evaluation of LLMsยถ

โœ… Standard Benchmarks (GLUE, HELM, MMLU)ยถ

๐Ÿง  Measuring Hallucination, Bias, Toxicityยถ

โš–๏ธ Tradeoffs: Size vs. Accuracy vs. Inference Costยถ

Back to the top


๐Ÿงฐ LLM Capabilities and Limitationsยถ

๐Ÿง  Emergent Behaviors at Scaleยถ

๐Ÿ› ๏ธ In-Context Learningยถ

๐Ÿงจ Hallucinations and Failuresยถ

๐Ÿ“‰ Prompt Sensitivityยถ

Back to the top


๐Ÿš€ Use Cases and Applicationsยถ

๐Ÿ’ฌ Chatbots and Assistantsยถ

๐Ÿ“„ Text Summarizationยถ

๐Ÿ”Ž Search + RAG (Retrieval-Augmented Generation)ยถ

๐Ÿง  Reasoning, Coding, Math, and Beyondยถ

Back to the top


๐Ÿ” Risks and Ethical Concernsยถ

๐Ÿ” Model Misuse and Jailbreaksยถ

๐Ÿ”ฌ Biases and Stereotypingยถ

๐Ÿ”’ Privacy, Copyright, and Data Leakageยถ

โš–๏ธ Responsible Deploymentยถ

Back to the top


๐Ÿ”ง Building with LLMs Todayยถ

๐Ÿค– Open vs. Closed Modelsยถ

๐Ÿงฐ APIs (OpenAI, Anthropic, Cohere)ยถ

โš™๏ธ Open-source (LLaMA, Mistral, Falcon)ยถ

๐Ÿง  Model Selection Tipsยถ

Back to the top


๐Ÿ”š Closing Notesยถ

๐Ÿงญ Summary and Key Takeawaysยถ

๐Ÿš€ Next Up: Prompt Engineeringยถ

๐Ÿง  What to Practiceยถ

Back to the top