Python Status: Pending Migration

๐Ÿ“– Transformers: The Architecture That Changed NLPยถ

  • ๐Ÿง  Why Transformers?
    • ๐Ÿ”„ Limits of RNNs and CNNs for Sequential Data
    • ๐Ÿ”— Need for Long-Range Dependencies
    • โฑ๏ธ Parallelism and Efficiency
  • ๐Ÿ—๏ธ Core Building Blocks
    • ๐Ÿ“ฆ Embeddings
    • ๐ŸŽฏ Positional Encoding
    • ๐Ÿงฎ Self-Attention Mechanism
    • ๐Ÿง  Multi-head Attention
    • ๐Ÿงฑ Feedforward Layers
    • ๐Ÿ” Layer Norm, Skip Connections
  • ๐Ÿ”ฌ The Transformer Block
    • ๐Ÿ” Encoder Block (Structure + Flow)
    • ๐Ÿ” Decoder Block (Structure + Flow)
    • ๐Ÿ”„ Masking in Attention
    • ๐Ÿ“ถ Stack of N Layers
  • ๐Ÿ”ข Attention Mechanism in Depth
    • ๐Ÿง  Attention as Weighted Lookup
    • ๐Ÿ“ Query, Key, Value Vectors
    • ๐Ÿ“Š Dot-Product Attention Calculation
    • โš™๏ธ Softmax + Scaling
  • ๐Ÿงฐ Training a Transformer Model
    • ๐Ÿ“Š Example: Sequence Classification or Translation
    • ๐Ÿ’ก Tokenization (WordPiece/BPE) Basics
    • ๐Ÿงฎ Input-Output Pipeline
  • ๐Ÿ“š Transformers Beyond Text
    • ๐Ÿง  Use in Vision (ViT)
    • ๐Ÿงช Time Series and Tabular Data
    • ๐Ÿงฌ Multimodal Transformers
  • ๐Ÿงญ From Transformers to LLMs
    • ๐ŸŒ Evolution: Transformer โ†’ GPT/BERT โ†’ LLMs
    • ๐Ÿ“ˆ Scaling Laws (Depth, Width, Data)
    • ๐Ÿ” Pretraining Objectives: Causal vs. Masked
  • ๐Ÿ”š Closing Notes
    • โš ๏ธ Conceptual Pitfalls
    • ๐Ÿ” Visual Explainers and Demos to Explore
    • ๐Ÿš€ Next Up: Large Language Models (04)

๐Ÿง  Why Transformers?ยถ

๐Ÿ”„ Limits of RNNs and CNNs for Sequential Dataยถ

๐Ÿ”— Need for Long-Range Dependenciesยถ

โฑ๏ธ Parallelism and Efficiencyยถ

Back to the top


๐Ÿ—๏ธ Core Building Blocksยถ

๐Ÿ“ฆ Embeddingsยถ

๐ŸŽฏ Positional Encodingยถ

๐Ÿงฎ Self-Attention Mechanismยถ

๐Ÿง  Multi-head Attentionยถ

๐Ÿงฑ Feedforward Layersยถ

๐Ÿ” Layer Norm, Skip Connectionsยถ

Back to the top


๐Ÿ”ฌ The Transformer Blockยถ

๐Ÿ” Encoder Block (Structure + Flow)ยถ

๐Ÿ” Decoder Block (Structure + Flow)ยถ

๐Ÿ”„ Masking in Attentionยถ

๐Ÿ“ถ Stack of N Layersยถ

Back to the top


๐Ÿ”ข Attention Mechanism in Depthยถ

๐Ÿง  Attention as Weighted Lookupยถ

๐Ÿ“ Query, Key, Value Vectorsยถ

๐Ÿ“Š Dot-Product Attention Calculationยถ

โš™๏ธ Softmax + Scalingยถ

Back to the top


๐Ÿงฐ Training a Transformer Modelยถ

๐Ÿ“Š Example: Sequence Classification or Translationยถ

๐Ÿ’ก Tokenization (WordPiece/BPE) Basicsยถ

๐Ÿงฎ Input-Output Pipelineยถ

Back to the top


๐Ÿ“š Transformers Beyond Textยถ

๐Ÿง  Use in Vision (ViT)ยถ

๐Ÿงช Time Series and Tabular Dataยถ

๐Ÿงฌ Multimodal Transformersยถ

Back to the top


๐Ÿงญ From Transformers to LLMsยถ

๐ŸŒ Evolution: Transformer โ†’ GPT/BERT โ†’ LLMsยถ

๐Ÿ“ˆ Scaling Laws (Depth, Width, Data)ยถ

๐Ÿ” Pretraining Objectives: Causal vs. Maskedยถ

Back to the top


๐Ÿ”š Closing Notesยถ

โš ๏ธ Conceptual Pitfallsยถ

๐Ÿ” Visual Explainers and Demos to Exploreยถ

๐Ÿš€ Next Up: Large Language Models (04)ยถ

Back to the top